02/04/14

Allen Park High School Curriculum Map

Content Area: AP - Calculus

	Ch	Content	Skills	Benchmarks	Assessment	Essential Questions
September	Ch 0	Preliminaries	Functions	• I-1-5	Summer homework	How can we find the
~~ F		Real numbers	Shifting Graphs	• II-1-5	• Type 2 comments on	reflexive of any function
		Coordinates, lines	Trigonometric Functions	• II-1-3	summer assignments	respect to x-axis, y-axis,
					• Test in assignments	origin, and y=x
					C	
October	Ch 1	Limits and continuity	Rates of Change and Limits	• I-1-5	• Quiz	What constant acceleration
		Derivatives	Rules for Finding Limits	• I-2-1	Group activities	does a freely falling body
		Implicit Differentiation	• Extensions of the Limit Concept	• II-2-2	• Type 1 if a function	experience near the surface
		_	Continuity	• II-2-5	is defined	the earth
			• Derivative of a Function		Chapter test	• What is the velocity of fall at
						any time
November	Ch 2	Applications of derivatives	Differentiation Rules	• I-2-1	• Type 2 properties of	• Why machinery breaks when
		• Extreme values functions	Rates of Change	• II-1-1	first derivatives	you run it too fast
	Cn 3	• The local extreme	The Chain Rule	• II-1-2	• Quiz and Test	• How rapidly will the fluid
		Asymptotes and dominant	Related Rates of Change	• II-1-7		level inside a vertical
		terms	• The Mean Value Theorem	• II-3-5		cylindrical tank drop II we
		Optimization		• 11-3-6		constant
						• How long will it take a
						specific percentage of the ice
						cube to melt?
						• On a highway chase, how can
						a police cruiser determine the
						speed of a speeding car.
December	Ch 4	Integrations	Optimization	• II-1-3	Graphing calculator	• How large should the squares
		• Properties, area and the	Indefinite Integrals	• II-1-5	• Type 2 strategy for	cut from the corners be to
		MVT	• Integration by Substitution	• II-2-5	solving any related	make the box hold as much
		• Estimating with finite sum	Riemann Sums		rate problem	as possible
			• The Mean Value Theorem The		• Quiz	• You have been asked to
			Fundamental Theorem		• Type 3 the four sister	design a 1-L oil can like a
			• Substitution in Definite Integrals		race	right circular cylinder, what
			Numerical Integration		• Test	dimensions will use the least
						Material
						• what is the least expensive
						What is the stiffest beem we
						can cut from 12-inch log
January	Ch 5	Applications of integrals	Areas between Curves	• II-1-1	• Take home quiz from	Why is the volume of a

1

_	02/04/14									type	here	2
			•	Finding volumes of rotation around any lines parallel to x or y axes. Comparing disk, washer and shell Methods.	•	Finding Volumes by Slicing Volumes of Solids Cylindrical Shells	•	II-1-4 II-1-7I-2-3	•	ap test questions Test on Chapter 5	•	sphere with radius r is $v=4/3(3.14)r^3$ How fast a space vehicle needs to be going at a certain point to escape the earth's gravitational field or to predict the useful life a span of a radioactive material How do you define and calculate the area of the region between the graphs of two continuous functions? How do you define and calculate the volumes of solids by the method of slicing How are the disk and washer methods for calculating volumes derived from the methods of slicing?
	February	Ch 6	•	Transcendental Functions First order differential equations.	• • •	Inverse Functions Natural Logarithms a ^x and log _a x Growth and Decay L'Hopital's Rule	•	I-2-3 IV-3-4 I-2-2 IV-1-4	•	Test on Chapter 6	• • •	In about how many years will human teeth be 90% of their present size? What will be our descendant's tooth size 20,000 years from now? How many years will it take an amount of money to double when invested at r percent compounded?
	March	Ch 6 & Ch 7	•	Relative Rates of Growth Inverse Trigonometric Functions Derivatives of Inverses Basic integration formulas.	•	Relative Rates of Growth Inverse Trigonometric Functions Derivatives of Inverses Trigonometric functions	•	I-2-3	•	Open ended review Group study Test on each group	•	How far from the taller building should you place the station to maximize the number of hours it will be in the sun on a day when the sun passes directly overhead? How many seconds after the switch in an RL circuit is closed will it take the current i to reach half of its steady state value?
	April	•	•	Review for AP test	•	Multiple Choice and Open	•		•	Three hours AP	•	

02/04/14		type here 3
	Ended Questions	Practice Test
		Group leader points

02/04/14

4

May	• Review	 Multiple Choice and Open Ended Ouestions 	•	•	• Based on previous AP Tests
June	Integration by Parts	 Integration by Parts Partial Fractions Trigonometric Substitutions Improper Integrals 	•	Test on integration by partTest on partial fraction	•