Curriculum Map

Content Area: Calculus

	Content	Skills	Benchmarks	Essential Questions
September	 Functions and graphs Slope of curves 	 Rate of change of a function Increments Slope of linear equations and curves 	 I-1-5 I-2-1 II-1-5 	 Find a fourth point of a parallelogram, given three other points with the use of the slope formula? Determine the standard equation of a circle given the center point and the length of its radius? How can one distinguish the graphs of an absolute value, greatest integer function and trigonometric functions?
October	 Functions and derivatives Limits 	 Derivative of a function Velocity and rates Properties of limits 	 II-1-1 II-1-2 II-2-2 II-3-5 II-3-6 	• Find the rate of change of temperature in degrees per inch of different mediums (i.e. fiberglass, wallboard and wood)
November	Derivatives of rational, inverse, and composite functions	 Formal differentiation of polynomial function Derivative of rational functions Sum, product and power rules of derivatives Implicit differentiation 	• II-1-7 • II-2-2	• What is the relationship between the graph of a function of time and the derivative of the function (i.e. plotting of points for rabbit and fox population)
December	 Trigonometry First and second derivatives Derivative theorems 	 Inverse functions and their derivatives Composite functions and their derivatives Brief review of trig Maximum and minimum problems Rolle's and MVT theorems Introduction to integrals 	 I-2-2 II-2-3 II-1-3 II-1-5 II-2-5 	 Find the average of the highest and lowest mean daily temperatures of given data? How fast is the altitude of a conical pile of sand changing, given the radius of the base and the rate of change of the volume?
January	 Indefinite integrals Integration of trigonometric functions 	Related ratesIntroduction to integrals	 I-1-5 I-2-1 II-2-5 	• Find the velocity and position (distance) as a function of time, given the acceleration a=dv/dt?
February	Areas by CalculusRules for approximating integrals	Definite and indefinite integralsIntegration of curves to find area	• I-1-5 • II-1-2	• Find the area bounded by the coordinate axes and a given function.
March	• Alternative approximations of integrals	• Trapezoid and Simpson rules to find area under curves	• II-1-1 • II-1-4	• Find the approximate area between a curve and the x-axis

1

02/04/14		type here 2		
			• II-1-7	using either Simpson or Trapezoid Rules.
April	• Area and volume by integration	 Area between curves Volumes of slices, shells and washers Average value functions 	 II-1-1 II-1-4 II-1-7 	 Find the solid generated by rotating a plane area about an axis in its plane? Find the average daily inventory of a shipment of x cases of items every d days, given the function as the number of cases on hand d days after shipment.
May June	Integration of trigonometric and logarithmic functions	Transcendental functions Trig and inverse trig functions Natural logs and exponential derivatives and integrals	 I-2-2 I-2-3 IV-1-4 IV-3-4 	• Find the derivative and integration of various trig, natural logs and exponential functions.