	Content	Skills	Benchmarks	Essential Questions
September	- Functions and graphs - Slope of curves	- Rate of change of a function - Increments - Slope of linear equations and curves	- I-1-5 - I- 2-1 - II-1-5	- Find a fourth point of a parallelogram, given three other points with the use of the slope formula? - Determine the standard equation of a circle given the center point and the length of its radius? - How can one distinguish the graphs of an absolute value, greatest integer function and trigonometric functions?
October	- Functions and derivatives - Limits	- Derivative of a function - Velocity and rates - Properties of limits	- II-1-1 - II-1-2 - II-2-2 - II-3-5 - II-3-6	- Find the rate of change of temperature in degrees per inch of different mediums (i.e. fiberglass, wallboard and wood)
November	- Derivatives of rational, inverse, and composite functions	- Formal differentiation of polynomial function - Derivative of rational functions - Sum, product and power rules of derivatives - Implicit differentiation	- II-1-7 - II-2-2	- What is the relationship between the graph of a function of time and the derivative of the function (i.e. plotting of points for rabbit and fox population)
December	- Trigonometry - First and second derivatives - Derivative theorems	- Inverse functions and their derivatives - Composite functions and their derivatives - Brief review of trig - Maximum and minimum problems - Rolle's and MVT theorems - Introduction to integrals	- $\mathrm{I}-2-2$ - $\mathrm{II}-2-3$ - $\mathrm{II}-1-3$ - $\mathrm{II}-1-5$ - $\mathrm{II}-2-5$	- Find the average of the highest and lowest mean daily temperatures of given data? - How fast is the altitude of a conical pile of sand changing, given the radius of the base and the rate of change of the volume?
January	- Indefinite integrals - Integration of trigonometric functions	- Related rates - Introduction to integrals	- $\mathrm{I}-1-5$ - $\mathrm{I}-2-1$ - $\mathrm{II}-2-5$	- Find the velocity and position (distance) as a function of time, given the acceleration $\mathrm{a}=\mathrm{dv} / \mathrm{dt}$?
February	- Areas by Calculus - Rules for approximating integrals	- Definite and indefinite integrals - Integration of curves to find area	- I-1-5 - II-1-2	- Find the area bounded by the coordinate axes and a given function.
March	- Alternative approximations of integrals	- Trapezoid and Simpson rules to find area under curves	$\begin{array}{ll} \hline- & \mathrm{II}-1-1 \\ \hline & \mathrm{II}-1-4 \\ \hline \end{array}$	- Find the approximate area between a curve and the x -axis

02/04/14				type here 2
			- II-1-7	using either Simpson or Trapezoid Rules.
April	- Area and volume by integration	- Area between curves - Volumes of slices, shells and washers - Average value functions	$\begin{array}{ll} \hline \bullet & \mathrm{II}-1-1 \\ \bullet & \mathrm{II}-1-4 \\ \bullet & \mathrm{II}-1-7 \end{array}$	- Find the solid generated by rotating a plane area about an axis in its plane? - Find the average daily inventory of a shipment of x cases of items every d days, given the function as the number of cases on hand d days after shipment.
May	- Integration of trigonometric and logarithmic functions	- Transcendental functions Trig and inverse trig functions Natural logs and exponential derivatives and integrals	- I-2-2 - I-2-3 - IV-1-4 - IV-3-4	- Find the derivative and integration of various trig, natural logs and exponential functions.
June				

