ALLEN PARK HIGH SCHOOL

Summer Assessment

Geometry

Summer Packet

 For Students Entering Geometry

Summer 2015
This summer packet is intended to be completed by the FIRST DAY of school. This packet will be graded and count as the first grade of the marking period. You should be working on the packet for the class you are taking NEXT YEAR. Feel free to email me if you have any questions regarding your packet by emailing me at: tim.brown@apps.k12.mi.us. We encourage you to check your answers and re-work any problems that were incorrect. We expect you to spend at least $\mathbf{1}$ hour each week on your summer math packet. This packet is not designed for one intense 10 hour session the day before school starts, so begin now!

This summer math packet will be worth 50 points and will be the first recorded grade of the marking period. Bring your questions and concerns regarding any problems you may have had difficulty with to your class on the first day of school, September $4^{\text {th }}$. Start off the year with a great start by completing the packet to the best of your ability.

Show all work for all problems, regardless of their level of difficulty. Answers will be in the form of positive, negative, whole numbers, fractions and decimals. Leave answers in fraction form unless the question contains decimals.

Order of Operations

Remember PEMDAS (릴ease Excuse $\underline{M y}$ Dear $\underline{\text { Aunt Sally) }}$

You must perform the order of operations in a specific order.
P: Parentheses (Grouping symbols: parentheses(), brackets [], braces \{ \}, and fraction bars -).
E: Exponents, such as 3^{2}.
MD: Multiply OR Divide (compute whatever appears $1^{\text {st }}$ moving from left to right)
AS: Add OR Subtract (compute whatever appears $1^{\text {st }}$ moving from left to right)
Example 1: $\quad 5-2+6 \div 2 \cdot 4+3^{2}=5-2+6 \div 2 \cdot 4+\underset{\text { Exp. }}{3^{2}}=5-2+\underset{\text { Divide lst }}{6 \div 2} \cdot 4+9$

$$
\begin{aligned}
& =5-2+\underset{\text { Multiply }}{3 \cdot 4}+9 \rightarrow=\underbrace{5-2}_{\text {subtract }}+12+9 \\
& =\underbrace{3+12}_{\text {Add }}+9 \rightarrow=\underbrace{15+9}_{\text {Add }}=24
\end{aligned}
$$

Example 2: $\frac{-3 \pm \sqrt{3^{2}-4(1)(-10)}}{2}=\frac{-3 \pm \sqrt{\frac{9-4(1)(-10)}{\text { multiply }}}}{2}=\frac{-3 \pm \sqrt{\sum_{\text {add }}}}{2}=\frac{-4 \pm \sqrt{\text { evaluate }}}{2}=\frac{-3 \pm 7}{2}$

$$
\text { split into } 2 \text { parts }
$$

$=\frac{-3+7}{2}$ and $=\frac{-3-7}{2}$
$=\frac{4}{2} \quad$ and $=\frac{-10}{2}$
$=2$ and $=-5$

Find the value of each expression.

1. $10+16 \div 4+8$
2. $4\left(3+3^{2}\right)$
3. $4+2^{2}-15+4$
4. $\frac{14(8-15)}{2}$
5. $7-[4+(6.5)]$
6. $[21-(9-2)] \div 2$
7. $2.5+3^{3}-8 \div 2 \cdot 4.1$
8. $3+[8 \div(9+2(-4))]$
9. $4+8-2(4)(8)$
10. $\frac{-10 \pm \sqrt{10^{2}-4(2)(12)}}{4}$
11. $12^{2}+5^{2}-2(12)(5)$
12. $10^{2}+8^{2}$
13. $3^{2}+5^{2}-2(3)(5)$
14. $\frac{-2 \pm \sqrt{2^{2}-4(1)(63)}}{2}$

Simplifying Expressions

Simplifying expressions involves collecting like terms.
$8 x$ and $3 x$ are like terms $5 x$ and $6 y$ are not like terms
When simplifying expressions you must follow the order of operations.
Example 1: Simplify the expression. $\quad 9 x+5-2 x+7.5=\underset{\text { Change the order }}{9 x-2 x+5+7.5}=\underset{\text { like errms }}{9 x-2 x}+\underset{\text { like terms }}{5+7.5}=7 x+12.5$
Example 2: Simplify the expression. $-2(4 x-7)-x+4=\underset{\underbrace{-2(4 x-7)}_{\text {Distribute the }-2}}{-2}-x+4=-2 \cdot 4 x-2 \cdot(-7)-x+4$

$$
\begin{aligned}
& =-8 x+14-x+4=-\frac{8 x-x+14+4}{\text { change the order }} \\
& =\underbrace{}_{\underbrace{-8 x-x}_{\text {like erms }}}+\underbrace{14+4}_{\text {like terms }}=-9 x+18
\end{aligned}
$$

Simplify each expression.

15. $k+2-10 k$
16. $8 x+3+2 x$
17. $-5(1-8 a)-6 a$
18. $a-5 a$
19. $3(7 x+9)+10$
20. $-(x+9)-(5 x-6)$
21. $10(2 n+4)-6(n-1)$
22. $-8.3 k+5+3.6 k-2.3$
23. $\frac{5}{6} a+\frac{9}{2}\left(\frac{3}{2} a+\frac{19}{6}\right)$

Solving Equations

Remember the general rule: "What you do to one side, you must do to the other." If you add a number to one side of the equation, you must add the same number to the other." This rule holds true for adding, subtracting, multiplying, and dividing numbers or variables to each side of an equation.

Example 1: Solve.
$5 x+2=-2 x+16$
$\underset{+2 x}{5 x}+2=-2 x+16$ Add $2 x$ to both sides
$7 x+2=-2 \quad$ Subtract 2 from both sides
$7 x=14$
$\frac{7 x}{7}=\frac{14}{7} \quad$ Divide both sides by 7
$x=2$

Example 2: Solve.

$$
\begin{aligned}
& \frac{3}{2} x-5=1 \\
& \frac{3}{2} x-5=1 \quad \text { Add } 5 \text { to both sides } \\
& \frac{3}{2} x=6
\end{aligned}
$$

$$
\frac{2}{3} \cdot \frac{3}{2} x=6 \cdot \frac{2}{3} \quad \begin{aligned}
& \text { Multiply both sides by } \frac{2}{3} \\
& \text { which is the reciprocal of } \frac{3}{2}
\end{aligned}
$$

$$
x=4
$$

$34=2 x$
$\frac{34}{2}=\frac{2 x}{2} \quad$ Divide by 2
$17=x$

Solve each equation.

24. $\frac{8}{x}=\frac{9}{6}$
25. $-2=-4-n$
26. $4 x=80$
27. $-6=\frac{n}{9}$
28. $4 x-5+8=7$
29. $\frac{2}{5}=\frac{10}{x}$
30. $7+x=43$
31. $r-16=-8$
32. $0=6 n-6 n$
33. $\frac{4 y}{5}=\frac{6}{4}$
34. $m-2=6-3 m$
35. $-6(1-7 x)=-342$
36. $14=-b-b$
37. $\frac{4}{x+2}=\frac{9}{4}$
38. $6-4 b=-6 b+6(b-3)$
39. $\frac{2}{10}=\frac{2 y}{4}$
40. $-8(x-7)=-4(5 x+7)$
41. $\frac{x+7}{x-3}=\frac{5}{10}$
42. $-17-4 y=-(y-1)$
43. $\frac{x-3}{9}=\frac{x+1}{7}$
44. $-2(-5 y-3)+2(y+5)=-8$

Distance Between Two Points on the Coordinate Plane

Example 1: Find the distance between the pair of points $(5,-2),(-3,7)$.
You must pick one point to be point 1 and the other to be point 2. Point 1 has an x and a y coordinate. Point 1 will have x_{1} and y_{1} and point 2 will have x_{2} and y_{2}. For this example $\left(\underset{x_{1}}{(5,-2)},(-3,7)\right.$. Plug these numbers into the distance formula as follows.

$$
\begin{aligned}
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{{\underset{\text { combine }}{ }}_{(-3-5)^{2}}^{\left(\underset{\text { combine } 7+2}{(7-(-2))^{2}}\right.}=\sqrt{\underbrace{(-8)^{2}}_{\text {"square" }}+\underset{\text { "square" }}{(9)^{2}}}} \\
& =\underbrace{\sqrt{64+81}}_{\begin{array}{c}
\text { both are always } \\
\text { positive - now add }
\end{array}}=\underset{\begin{array}{c}
\text { square } \\
\text { root }
\end{array}}{\sqrt{145}}=\underset{\begin{array}{c}
\text { round to } 2 \\
\text { decimal places }
\end{array}}{\sqrt{12.04}}
\end{aligned}
$$

The distance between two points can also be interpreted as the length of the segment between the two endpoints.

Find the distance between each pair of points. Distance Formula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
45. $(3,4),(-1,-5)$
46. $(2,8),(8,0)$
47. $(-1,0),(-7,3)$
48. $(-8,4),(1,-7)$
49. $(-1,-4),(3,1)$
50. $(-4,4),(-4,4)$

Midpoint Between Two Points on the Coordinate Plane

Example 1: Find the midpoint of the line segment with the given endpoints $(5,-2),(-3,7)$.
You must pick one point to be point 1 and the other to be point 2. Point 1 has an x and a y coordinate. Point 1 will have x_{1} and y_{1} and point 2 will have x_{2} and y_{2}. For this example $(5,-2),(-3,7)$. Plug these numbers into the midpoint formula as follows.

$$
\text { m.p. }=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{\text { combine } 5-3}{5+(-3)}{ }^{2}, \frac{\text { combine }-2+7}{2}\right)=\binom{\frac{2}{2}+\frac{5}{2}}{\frac{5}{2} \text { simplify }}=(1,2.5)
$$

The midpoint is the point that is half way between the two given endpoints.

Find the midpoint of the line segment with the given endpoints. Midpoint Formula: m.p. $=\left(\frac{x_{2}+x_{1}}{2}, \frac{y_{2}+y_{1}}{2}\right)$
51. $(-5,-5),(4,5)$
52. $(3,2),(7,9)$
53. $(-3,-4),(-5,10)$
54. $(1,9),(3,5)$
55. $(-4,-9),(-7,-9)$
56. $(4,0),(-6,4)$

Slope of a Line on the Coordinate Plane

The Slope of a line represents its steepness. A large slope such as 7 or -6 is a steep line, while a small slope such as $1 / 2$ or $-1 / 4$ are lines with very little steepness (they are almost horizontal lines)

Example 1: Find the slope of the line through the two given points $(-4,6),(2,-3)$.
You must pick one point to be point 1 and the other to be point 2. Point 1 has an x and a y coordinate. Point 1 will have x_{1} and y_{1} and point 2 will have x_{2} and y_{2}. For this example $(-4,6),(2,-3)$. Plug these numbers into the slope formula as follows.

$$
m=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)=\left(\begin{array}{c}
\frac{\substack{\text { combine }-3-6 \\
(-3)-6 \\
2-(-4)}}{\left.\frac{\text { combine } 2+4}{2-(}\right)}=\binom{\frac{-9}{6}}{\underbrace{}_{\text {simplify }}}=\left(-\frac{3}{2}\right) \\
\hline
\end{array}\right.
$$

Find the slope of the line through each pair of points. Slope Formula: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
57. $(3,18),(20,-7)$
58. $(6,1),(18,1)$
59. $(4,-16),(-19,-5)$
60. $(-7,6),(-7,9)$
61. $(17,5),(-10,13)$
62. $(-12,-7),(-18,-11)$

Area

Area represents the total number of squares that are required to cover the interior of a flat (plane) figure. Each polygon has its own formula that can be used to calculate the area. Use the formulas below to calculate the area of the given figure.

Formulas:
Rectangle/Parallelogram: $A=b h \quad$ Triangle: $A=\frac{1}{2} b h \quad$ Circle: $A=\pi r^{2} \quad$ Trapezoid: $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$
$b=$ base of the figure $\quad h=$ the height of the figure $\quad r=$ radius of a circle $\quad d=$ diameter of a circle $\quad \pi=3.14$

Find the area of each figure. Round to the nearest hundredth when necessary.
63.

64. \qquad

65.

66. \qquad

67.

68. \qquad

69. \qquad

70. \qquad
71. \qquad

73. \qquad

74. \qquad
72. \qquad

75. Circle with a radius of 11 inches.
76. Circle with a diameter of 8 km .
77.

Perimeter and Circumference

Perimeter represents the distance around a figure. You can simply add up all of the sides of the figure.

Circumference is the distance around a circle. You will use one of the two given formulas below.

Formulas:
Perimeter $=$ add up all of the sides \quad Circumference: $\quad C=2 \pi r$ or $C=\pi d \quad r=$ radius $\quad d=$ diameter

Find the perimeter or circumference for each figure. Round to the nearest hundredth when necessary.
78. \qquad

79. \qquad

80. \qquad

81.

11.5 yd
82. \qquad

83.

84.

85.

86. \qquad

Applying Geometric Terminology

Below you will find multiple definitions that you will see at the beginning of the school year in Geometry. Read each definition and observe all of the information in and around the diagram.

The angles in a triangle
always Add up to 180°.

Using the definitions above, identify the type of angle relationships of the numbered angles below.
87.

90. \qquad

88. \qquad

91. \qquad

89.

92. \qquad

93. Find the measure of angle J.

94. Find the measure of angle D. \qquad

Use the definitions from the previous page to first write an equation for the angle relationship, then find the value of \boldsymbol{x}.
95. \qquad

98.

96. \qquad

97. \qquad

99. \qquad

100. \qquad

