Curriculum Map

Content Area: Trigonometry

	Content	Skills	Benchmarks	Assessments	Essential Questions
September	- The Cartesian Coordinate System - Functions and their families - Function Transformations and Symmetry - Compositions and Inverses - Angles and Degree Measure - Radian Measure, Arc Length and Area - Reference Angles - Right Triangle Trig - The Trigonometric Functions	- Distance formula, Pythagorean theorem, and compositions - Radians, degrees, and revolutions - Lengths of an arc, area of a sector - Measurement of Angles, Arcs, and Sectors - Angular velocity, linear space - Begin the six trig functions	- G1.2.3 Know a proof of the Pythagorean Theorem, and use the Pythagorean Theorem and its converse to solve multistep problems. - G.1.7.1 Find an equation of a circle given its center and radius; given the equation of a circle, find its center and radius. - G3.1.1 Define reflection, rotation, translation, and glide reflection and find the image of a figure under a given isometry - G1.2.4 Prove and use the relationships among the side lengths and the angles of $30^{\circ}-60^{\circ}-90^{\circ}$ triangles and $45^{\circ}-45^{\circ}-90^{\circ}$ triangles. - G1.3.1 Define the sine, cosine, and tangent of acute angles in a right triangle as ratios of sides. Solve problems about angles, side lengths, or areas using trigonometric ratios in right triangles. - G1.6.1 Solve multistep problems involving circumference and area of circles. - G1.6.3 Solve problems and justify arguments about central angles, inscribed angles, and triangles in circles. - G1.6.4 Know and use properties of arcs and sectors and find lengths of arcs and areas of sectors.	- Quiz P.1-P. 2 - Collins Writing Type 3: Graphing - Quiz P.3-P. 4 - Collins Writing Type 3: Multiple Translations - Chapter P Test - Quiz 1.1-1.2	- How do we transform one graph to another? - What does an inverse do? - How are the six trig ratios different? - What are the real-world applications for radian measurement of angles?

02/04/14 Pa					
October	- The Trigonometric Functions - Graphs of the Trig Functions	- Finish the six trig functions - Solve right triangles \& applications - SOH CAH TOA - Unit circle - Graph sin, cos, tan, csc, sec , cot	- G1.3.3 Determine the exact values of sine, cosine, and tangent for $0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$, and their integer multiples and apply in various contexts. - L1.1.6 Explain the importance of the irrational numbers and in basic right triangle trigonometry, and the importance of because of its role in circle relationships. - G1.3.1 Define the sine, cosine, and tangent of acute angles in a right triangle as ratios of sides. Solve problems about angles, side lengths, or areas using trigonometric ratios in right triangles. - G3.1.1 Define reflection, rotation, translation, and glide reflection and find the image of a figure under a given isometry.	- Quiz Unit Circle - Collins Writing Type 3: Angles from Unit Circle - Quiz 1.3-1.4 - Chapter 1 Test - Quiz 2.1-2.2 - Collins Writing Type 3: Graphing Trigonometric Functions - Quiz 2.3 - Chapter 2 Test	- When do we use the six trig ratios? - How can we use the unit circle to solve common values? - Why are right triangles important? - What are some realworld applications involving trigonometric functions? - How do the graphs of trig functions relate to astronomical data?
November	- Basic Trig Identities - Verifying Identities - Sum and Difference Identities for Sine, Cosine and Tangent - Double and Half Angle Identities	- Relations, functions, inverses - Trig Identities - Simplifying expressions using identities - Find exact values for double and half angles	- G1.3.3 Determine the exact values of sine, cosine, and tangent for $0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$, and their integer multiples and apply in various contexts. - L2.1.4 Add, subtract, and multiply complex numbers; use conjugates to simplify quotients of complex numbers.	- Quiz 3.1-3.2 - Collins Writing Type 3: Simplifying Trig Functions - Quiz 3.3-3.4 - Quiz 3.5-3.6 - Chapter 3 Test	- How do the graphs of trig functions relate to sound/radar waves? - What are some examples of modeling trig functions?
December	- Inverse Trig Functions - Sine, Cosine and Tangent Equations - Multiple Angle Equations - Trig Equations of Quadratic Type	- Analyze inverses of sin, cosine, and tangent - Trig equations - The path of a projectile	- G1.3.3 Determine the exact values of sine, cosine, and tangent for $0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$, and their integer multiples and apply in various contexts. - L2.1.4 Add, subtract, and multiply complex numbers; use conjugates to simplify quotients of complex numbers.	- Quiz 4.1 - Quiz 4.2-4.3 - Chapter 4 Test - Collins Writing Type 3: Analyze Inverses Functions	- How can we prove trig identities? - How do we use sum and difference to find noncommon angles? - What are some applications for trig identities?

02/04/14					Page 3
January	- Solving Oblique Triangles - Law of Sines and Law of Cosines	- Law of Sines - Law of Cosines - Ambiguous Case - Review and final exam	- G1.3.2 Know and use the Law of Sines and the Law of Cosines and use them to solve problems. Find the area of a triangle with sides a and b and included angle q using the formula Area $=(1 / 2) a b s i n \mathrm{q}$.	- Quiz 5.1-5.2 - Collins Writing Type 2 : When to use Law of Sines and Law of Cosines - Semester Exam	- How do we use double and half to find noncommon angles? - When do we use the Law of Sines/Cosines?

